Long-term Values in Partial Observation Markov Decision Processes.

Xavier Venel (LUISS Guido Carli)

Current Trends in Graph and Stochastic Games (7-8 April 2022)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 2 Evaluation of the game
- Immediate relation between these notions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

4 Results

- Limit of finite evaluations
- Liminf evaluation
- Weighted evaluations
- Limsup evaluation

Outline

The model

- 2 Evaluation of the game
- Immediate relation between these notions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

4 Results

- Limit of finite evaluations
- Liminf evaluation
- Weighted evaluations
- Limsup evaluation

Model

We consider $\Gamma = (K, A, S, q, r)$ a Partial Observation Markov Decision Problem:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- a finite state space K,
- a finite set of actions A,
- a finite set of signals S,
- a transition $q: K \times A \rightarrow \Delta(K \times S)$,
- a stage payoff $r : K \times A \rightarrow [0, 1]$.

How is the POMDP played?

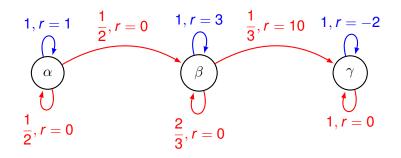
Given $p \in \Delta(K)$, $\Gamma(p)$ is played as following:

 Stage 0: a state k₁ is chosen along p and nothing is told to the Decision Maker (DM).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Stage 1:
 - DM chooses an action *a*₁,
 - He receives the (unobserved) payoff $r(k_1, a_1)$,
 - (k_2, s_1) is chosen according to $q(k_1, a_1)$,
 - s₁ is announced to the DM.
- Stage 2: the DM chooses etc ...

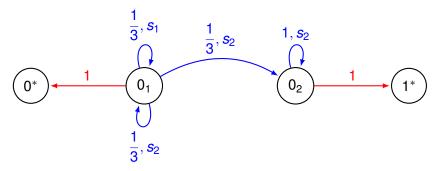
An example: $K = \{\alpha, \beta, \gamma\}$, $A = \{B | ue, Red\}$, S = K



We assume that with probability one, the state is equal to the signal. Hence, the decision maker knows the state.

(ロ) (同) (三) (三) (三) (○) (○)

An example: $K = \{0^*, 0_1, 0_2, 1^*\}, A = \{Blue, Red\}, S = \{s_1, s_2\}$



Payoff only depends on the current state and his equal to the "name" of the state.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition of strategies

Definition

A behavioral strategy for the decision-maker is a function σ: ∪ (A × S)^{t-1} → Δ(A). The set of such strategies is denoted Σ.
A pure strategy for the decision-maker is a function σ: ∪ (A × S)^{t-1} → A.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A pair (p, σ) induces a probability measure $\mathbb{P}_{p,\sigma}$ on $(K \times S \times A)^{\mathbb{N}^*}$.

Definition of strategies

Definition

A behavioral strategy for the decision-maker is a function σ: ∪ (A × S)^{t-1} → Δ(A). The set of such strategies is denoted Σ.
A pure strategy for the decision-maker is a function σ: ∪ (A × S)^{t-1} → A.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A pair (p, σ) induces a probability measure $\mathbb{P}_{p,\sigma}$ on $(K \times S \times A)^{\mathbb{N}^*}$.

Outline

The model

- 2 Evaluation of the game
- Immediate relation between these notions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

4 Results

- Limit of finite evaluations
- Liminf evaluation
- Weighted evaluations
- Limsup evaluation

How to aggregate this stage payoffs?

There are many possibilities that differ in several ways:

- event happening in finite time have a positive weight or not,
- the relative weight of each stage is independent of the play or not,
- averaging or not,

Not covered in this talk: Parity games, Buchi game...

• Finite game payoff:

$$\gamma_n(\boldsymbol{p},\sigma) = \mathbb{E}_{\boldsymbol{p},\sigma}\left(\frac{1}{n}\sum_{t=1}^n r(k_t, a_t)\right)$$

Discounted payoff:

$$\gamma_{\lambda}(\boldsymbol{\rho},\sigma) = \mathbb{E}_{\boldsymbol{\rho},\sigma}\left(\lambda \sum_{t=1}^{+\infty} (1-\lambda)^{t-1} r(k_t,a_t)\right)$$

• A constant weighted θ -evaluation for $\theta \in \Delta(\mathbb{N}^*)$

$$\gamma_{\theta}(\boldsymbol{p},\sigma) = \mathbb{E}_{\boldsymbol{p},\sigma}\left(\sum_{t=1}^{+\infty} \theta_t \boldsymbol{r}(\boldsymbol{k}_t, \boldsymbol{a}_t)\right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Finite game payoff:

$$\gamma_n(\boldsymbol{p},\sigma) = \mathbb{E}_{\boldsymbol{p},\sigma}\left(\frac{1}{n}\sum_{t=1}^n r(k_t, a_t)\right)$$

Discounted payoff:

$$\gamma_{\lambda}(\boldsymbol{\rho},\sigma) = \mathbb{E}_{\boldsymbol{\rho},\sigma}\left(\lambda \sum_{t=1}^{+\infty} (1-\lambda)^{t-1} r(k_t, a_t)\right)$$

• A constant weighted θ -evaluation for $\theta \in \Delta(\mathbb{N}^*)$

$$\gamma_{\theta}(\boldsymbol{p}, \sigma) = \mathbb{E}_{\boldsymbol{p}, \sigma} \left(\sum_{t=1}^{+\infty} \theta_t \boldsymbol{r}(\boldsymbol{k}_t, \boldsymbol{a}_t) \right)$$

- Put a strictly positive weight on what happens in finite time.
- Independent of the play.

• Uniform approach-payoff:

$$\gamma_u(\boldsymbol{p},\sigma) = \liminf_{n \to +\infty} \mathbb{E}_{\boldsymbol{p},\sigma} \left(\frac{1}{n} \sum_{t=1}^n r(k_t, a_t) \right)$$

• lim inf-payoff:

$$\underline{\gamma}(\boldsymbol{p},\sigma) = \mathbb{E}_{\boldsymbol{p},\sigma}\left(\liminf_{n \to +\infty} \left(\frac{1}{n} \sum_{t=1}^{n} r(\boldsymbol{k}_t, \boldsymbol{a}_t)\right)\right)$$

Iim sup-payoff:

$$\overline{\overline{\gamma}}(\boldsymbol{p},\sigma) = \mathbb{E}_{\boldsymbol{p},\sigma}\left(\limsup_{n \to +\infty} \left(\frac{1}{n} \sum_{t=1}^{n} r(\boldsymbol{k}_t, \boldsymbol{a}_t)\right)\right)$$

Uniform approach-payoff:

$$\gamma_u(\boldsymbol{p},\sigma) = \liminf_{n \to +\infty} \mathbb{E}_{\boldsymbol{p},\sigma} \left(\frac{1}{n} \sum_{t=1}^n r(k_t, a_t) \right)$$

Iim inf-payoff:

$$\underline{\gamma}(\boldsymbol{p},\sigma) = \mathbb{E}_{\boldsymbol{p},\sigma}\left(\liminf_{n \to +\infty} \left(\frac{1}{n} \sum_{t=1}^{n} r(\boldsymbol{k}_t, \boldsymbol{a}_t)\right)\right)$$

• lim sup-payoff:

$$\overline{\overline{\gamma}}(\boldsymbol{\rho},\sigma) = \mathbb{E}_{\boldsymbol{\rho},\sigma}\left(\limsup_{n \to +\infty} \left(\frac{1}{n} \sum_{t=1}^{n} r(k_t, a_t)\right)\right)$$

- put a null weight on what happens in finite time.
- relative weights depend on the play.

Definition

An evaluation is a sequence of functions $\theta = (\theta_t)_{t \ge 1}$ from $(K \times S \times A)^{\infty}$ to [0,1]. It is

- history-dependent if θ_m is measurable with respect to the observed past before stage m,
- normalized if for every infinite history, the weights sum to 1.

One defines the θ -evaluation for θ an evaluation by

$$\gamma_{\theta}(\boldsymbol{p},\sigma) = \mathbb{E}_{\boldsymbol{p},\sigma}\left(\sum_{t=1}^{+\infty} \theta_t \boldsymbol{r}(\boldsymbol{k}_t, \boldsymbol{a}_t)\right)$$

(日) (日) (日) (日) (日) (日) (日)

Definition

An evaluation is a sequence of functions $\theta = (\theta_t)_{t \ge 1}$ from $(K \times S \times A)^{\infty}$ to [0,1]. It is

- history-dependent if θ_m is measurable with respect to the observed past before stage *m*,
- normalized if for every infinite history, the weights sum to 1.

One defines the θ -evaluation for θ an evaluation by

$$\gamma_{\theta}(\boldsymbol{p}, \sigma) = \mathbb{E}_{\boldsymbol{p}, \sigma} \left(\sum_{t=1}^{+\infty} \theta_t \boldsymbol{r}(\boldsymbol{k}_t, \boldsymbol{a}_t) \right)$$

- put a positive weight on what happens in finite time.
- relative weights depend on the play.

Value

Definition

For every evaluation γ and initial probability distribution, we denote by

$$\mathbf{v}(\mathbf{p}) = \max_{\sigma \in \mathbf{\Sigma}} \gamma(\mathbf{p}, \sigma).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What are the links between all these values ?

Outline

The model

2 Evaluation of the game

Immediate relation between these notions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

4 Results

- Limit of finite evaluations
- Liminf evaluation
- Weighted evaluations
- Limsup evaluation

Inequalities 101

• For every infinite play,

$$\liminf_{n \to +\infty} \left(\frac{1}{n} \sum_{t=1}^{n} r(k_t, a_t) \right) \le \limsup_{n \to +\infty} \left(\frac{1}{n} \sum_{t=1}^{n} r(k_t, a_t) \right).$$

So $v \le \overline{v}$

• By Fatou's lemma for a given strategy

$$\mathbb{E}_{\rho,\sigma}\left(\liminf_{n\to+\infty}\left(\frac{1}{n}\sum_{t=1}^{n}r(k_t,a_t)\right)\right)\leq\liminf_{n\to+\infty}\mathbb{E}_{\rho,\sigma}\left(\frac{1}{n}\sum_{t=1}^{n}r(k_t,a_t)\right)$$

SO

 $\underline{V} \leq V_{U}.$

Inequalities 101

• For every infinite play,

$$\liminf_{n \to +\infty} \left(\frac{1}{n} \sum_{t=1}^{n} r(k_t, a_t) \right) \le \limsup_{n \to +\infty} \left(\frac{1}{n} \sum_{t=1}^{n} r(k_t, a_t) \right).$$

So $v < \overline{\overline{v}}$

• By Fatou's lemma for a given strategy

$$\mathbb{E}_{\boldsymbol{p},\sigma}\left(\liminf_{n\to+\infty}\left(\frac{1}{n}\sum_{t=1}^{n}r(k_{t},\boldsymbol{a}_{t})\right)\right)\leq\liminf_{n\to+\infty}\mathbb{E}_{\boldsymbol{p},\sigma}\left(\frac{1}{n}\sum_{t=1}^{n}r(k_{t},\boldsymbol{a}_{t})\right)$$

SO

 $\underline{\underline{v}} \leq v_u$.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

 $v_u \leq \liminf_{n \to +\infty} v_n.$

Intuition:

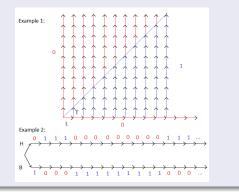
 It is easier to guarantee a payoff if the DM can adapt to the length of the game.

(日) (日) (日) (日) (日) (日) (日)

- The decision maker maximizes the payoff.
- lim inf is hiding an infimum over the stages.
- maxmin ≤ minmax

Relation between the three notions (countable case)

With a countable set of states, these inequalities can be strict.



What happens when the state space is finite?

Outline

The model

- 2 Evaluation of the game
- Immediate relation between these notions

・ コット (雪) (小田) (コット 日)

4 Results

- Limit of finite evaluations
- Liminf evaluation
- Weighted evaluations
- Limsup evaluation

Limit of finite evaluations

Outline

The model

- 2 Evaluation of the game
- Immediate relation between these notions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

4 Results

- Limit of finite evaluations
- Liminf evaluation
- Weighted evaluations
- Limsup evaluation

Limit of finite evaluations

Limit of finite values and Uniform value

Theorem (Rosenberg-Solan-Vieille 2002)

The POMDP has a uniform value:

- $(v_n)_{n\geq 1}$ converges uniformly to some function v_{∞} .
- $V_u = V_\infty$.

Remark • Extended by Renault (2011) to infinite action and signal spaces (with continuity assumptions).

• The proof involves behavorial strategies

The decision maker can play well in long games without knowing the length of the game.

Liminf evaluation

Outline

The model

- Evaluation of the game
- Immediate relation between these notions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

4 Results

• Limit of finite evaluations

Liminf evaluation

- Weighted evaluations
- Limsup evaluation

Results

Liminf evaluation

Liminf value and Uniform value

Theorem (Venel and Ziliotto 2016)

The POMDP has a strong uniform value:

$$\underline{\underline{V}}=V_{U}=V_{\infty}.$$

Corollary

The POMDP $\Gamma(p)$ has a uniform value in pure strategies.

Even when very pessimistic, the decision maker can still guarantee this value (and without randomizing).

The model

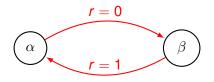
- Evaluation of the game
- Immediate relation between these notions

・ コット (雪) (小田) (コット 日)

4 Results

- Limit of finite evaluations
- Liminf evaluation
- Weighted evaluations
- Limsup evaluation

Uniform value and weighted evaluation: a counterexample



- $K = \{\alpha, \beta\}, A=\{\text{Red}\}.$
- Consider the following evaluation

$$\theta^{odd,n} = \left(\frac{1}{2n}, 0, \frac{1}{2n}, 0, \cdots, ..., \frac{1}{2n}, 0, 0, 0, \cdot\right)$$

 Then the value under θ^{odd,n} is equal to 1 starting from β and 0 from α.

Different from the uniform value (equal to 1/2).

 $) \land \bigcirc$

Uniform value and weighted evaluation: play-independent

Given a constant weighted evaluation $\theta \in \Delta(\mathbb{N}^*)$, we define

$$I(\theta) = |\theta_1| + \sum_{t \ge 1} |\theta_{t+1} - \theta_t|.$$

Theorem (Renault and Venel 2017)

When $I(\theta)$ goes to 0, v_{θ} also converges to v_{μ} .

Remarks

If the sequence of weight is non-increasing,

$$I(\theta)=2\theta_1.$$

• Stronger results in the article: uniform θ -value.

Uniform value and weighted evaluation: history-dependent (1/2)

Given a (not constant) evaluation θ , we define

$$I(\boldsymbol{p}, \boldsymbol{\theta}, \sigma) = \mathbb{E}_{\boldsymbol{p}, \sigma} \left(|\theta_1| + \sum_{t \ge 1} |\theta_{t+1} - \theta_t| \right)$$

and $I(\theta, p)$ as the supremum over all possible strategies.

Definition

The POMDP has a weighted value if for all $\varepsilon > 0$, there exists $\alpha > 0$ and σ^* a strategy such that for all normalized history-dependent evaluation θ ,

$$I(\theta, p) \leq \alpha \Rightarrow \gamma_{\theta}(p, \sigma^*) \geq v_u(p) - \varepsilon.$$

Uniform value and weighted evaluation: history-dependent (2/2)

Theorem (Venel and Ziliotto 2020)

- Any finite POMDP has a weighted value.
- Moreover, it can be guarantee with a pure strategy with finite memory.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

The model

- Evaluation of the game
- Immediate relation between these notions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

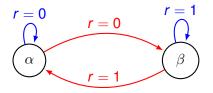
4 Re

Results

- Limit of finite evaluations
- Liminf evaluation
- Weighted evaluations
- Limsup evaluation

Optimistic decision maker: a counterexample

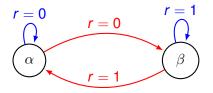
What happens if the decision maker is optimistic?



- POMDP: $K = \{\alpha, \beta\}$, A={Red,Blue}; No signal.
- The decision maker can guarantee ? .

Optimistic decision maker: a counterexample

What happens if the decision maker is optimistic?



- POMDP: $K = \{\alpha, \beta\}$, A={Red,Blue}; No signal.
- The decision maker can guarantee 1.

Intution

Value of POMDP = Value of MDP

if

the implicit weight in the evaluation only depends on what the player observes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Not the case for the limsup

An intermediate limsup (1/2): Auxiliary MDP

It is classical to associate to a POMDP an auxiliary MDP on the belief space.

In the previous example:

• X = [0, 1] (the probability to be in α),

• The transition is deterministic:

 $\widetilde{q}(p, red) = 1 - p$ and $\widetilde{q}(p, blue) = p$.

• The payoff is the linear extension of *r*:

$$g(p, red) = g(p, blue) = p.$$

(日) (日) (日) (日) (日) (日) (日)

An intermediate limsup (2/2): limsup-belief evaluation

Define the limsup-belief evaluation where we aggregate the payoffs for the same belief

$$\overline{\gamma}(\boldsymbol{p},\sigma) = \mathbb{E}_{\boldsymbol{p},\sigma}\left(\limsup_{n \to +\infty} \left(\frac{1}{n} \sum_{t=1}^{n} g(\boldsymbol{p}_t, \boldsymbol{a}_t)\right)\right)$$

Theorem (Venel and Ziliotto 2020)

$$V_{U} = \overline{V}.$$

|▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

Assymetry between lim sup and lim inf

Playing non stationary may lower the payoff for the lim inf since then

 $\mathbb{E}_{\boldsymbol{p},\sigma} \liminf < \liminf \mathbb{E}_{\boldsymbol{p},\sigma}.$

Therefore, the optimality of strategies with finite memory yields equality.

- On the contrary playing non stationary may increase the payoff for the lim sup hence a strictly higher payoff.
- To summarize

$$\underline{\underline{v}} = \underline{v} = \overline{v} < \overline{\overline{v}}.$$

Outline

The model

- 2 Evaluation of the game
- Immediate relation between these notions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

4 Results

- Limit of finite evaluations
- Liminf evaluation
- Weighted evaluations
- Limsup evaluation

Conclusions :

- Equality between many different notions of values
- Proof highlights links between the weighted average approach and the lim sup.

Current research:

- Weighted evaluation can be reinterpreted in terms of a terminal payoff with a stopping clock.
- Investigate what happens with different type of clocks.

Further research:

- What happens for two-player zero-sum game with one controller?
- What can we say in other class of stochastic games?

Thanks

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Outline of the proof:lower bound

DM can guarantee v_u (up to ε)

- Chatterjee et al. (2020): ∃ a pure ε-optimal strategy with finite memory for the uniform value.
- It reduces the problem to the case without player (Homogeneous Finite Markov chain)
- True for Markov chain: ergodic structure+periodicity of the process+computation.

Outline of the proof:upper bound

DM can not do better

- Consider $(\theta^l)_{l\geq 1}$ such that $l(p, \theta^l) \to 0$.
- Associate to the sequence $v_{\theta'}(p)$, an invariant distribution μ^* of the POMDP summarizing the payoff.
- Payoff at μ^{*} is smaller than uniform value at μ^{*},
- Since uniform value decreases along play (in a martingale sense), smaller than the uniform value at *p*.

$$\lim_{\ell o +\infty} extsf{v}_{ heta^\ell} = extsf{g}(\mu^*) \leq extsf{v}_{ extsf{u}}(\mu^*) \leq extsf{v}_{ extsf{u}}(extsf{p}).$$

Outline of the proof: Lower bound

Play for the liminf evaluation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline of the proof: Upper bound

Can not do more

• Fix (ε, p, σ) and $l \ge 1$. One can define a r.v. η^l such that $\mathbb{E}_{p,\sigma}\left(\frac{1}{\eta^l}\sum_{t=1}^{\eta^l}g(x_t, a_t)\right) \ge \mathbb{E}_{p,\sigma}\left(\limsup_{n \to +\infty}\left(\frac{1}{n}\sum_{t=1}^n g(x_t, a_t)\right)\right) - \frac{1}{l}$

• 1st Problem: Not measurable w.r.t the past but one can replace by

$$\hat{\theta}'_n = \mathbb{E}_{\sigma}\left(\frac{1}{\eta'}\mathbb{1}_{n \leq \eta'} | \mathcal{F}_n\right).$$

then

$$\gamma_{\hat{\theta}^{I}}(\boldsymbol{p},\sigma) \geq \overline{\gamma}(\boldsymbol{p},\sigma) - \frac{1}{I}.$$

- 2nd Problem: Not normalized but almost.
- One can apply the upper bound for weighted evaluation.

Return